On Point-finiteness in Pointfree Topology
نویسندگان
چکیده
Abstract: In pointfree topology, the point-finite covers introduced by Dowker and Strauss do not behave similarly to their classical counterparts with respect to transitive quasi-uniformities, contrarily to what happens with other familiar types of interior-preserving covers. The purpose of this paper is to remedy this by modifying the definition of Dowker and Strauss. We present arguments to justify that this modification turns out to be the right pointfree definition of point-finiteness. Along the way we place point-finite covers among the classes of interior-preserving and closure-preserving families of covers that are relevant for the theory of (transitive) quasi-uniformities, completing the study initiated with [6].
منابع مشابه
Pointfree topology version of image of real-valued continuous functions
Let $ { mathcal{R}} L$ be the ring of real-valued continuous functions on a frame $L$ as the pointfree version of $C(X)$, the ring of all real-valued continuous functions on a topological space $X$. Since $C_c(X)$ is the largest subring of $C(X)$ whose elements have countable image, this motivates us to present the pointfree version of $C_c(X).$The main aim of this paper is to present t...
متن کاملZero elements and $z$-ideals in modified pointfree topology
In this paper, we define and study the notion of zero elements in topoframes; a topoframe is a pair $(L, tau)$, abbreviated $L_{ tau}$, consisting of a frame $L$ and a subframe $ tau $ all of whose elements are complemented elements in $L$. We show that the $f$-ring $ mathcal{R}(L_tau)$, the set of $tau$-real continuous functions on $L$, is uniformly complete. Also, t...
متن کاملOn the pointfree counterpart of the local definition of classical continuous maps
The familiar classical result that a continuous map from a space $X$ to a space $Y$ can be defined by giving continuous maps $varphi_U: U to Y$ on each member $U$ of an open cover ${mathfrak C}$ of $X$ such that $varphi_Umid U cap V = varphi_V mid U cap V$ for all $U,V in {mathfrak C}$ was recently shown to have an exact analogue in pointfree topology, and the same was done for the familiar cla...
متن کاملCompactness and the Stone-Weierstrass theorem in pointfree topology
Pointfree topology is, as the name suggests, a way of studying spaces without (mentioning) points. This idea is more natural than one might initially think. For example, when drawing a point on paper, we do no draw an actual point, but a collection of points somewhere near the desired one. We drew a “spot”, which can be reduced in size if that would be required to serve our purposes. Hence it m...
متن کاملZero sets in pointfree topology and strongly $z$-ideals
In this paper a particular case of z-ideals, called strongly z-ideal, is defined by introducing zero sets in pointfree topology. We study strongly z-ideals, their relation with z-ideals and the role of spatiality in this relation. For strongly z-ideals, we analyze prime ideals using the concept of zero sets. Moreover, it is proven that the intersection of all zero sets of a prime ideal of C(L),...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Categorical Structures
دوره 15 شماره
صفحات -
تاریخ انتشار 2007